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Abstract
We investigate possible intermediate structures in the process of microphase
separation in diblock copolymers. By employing the two-mode expansion
valid in the weak-segregation regime, we have found that the Fddd structure
and diamond structure of interconnected domains can be metastable whereas the
hexagonally perforated lamellar structure and FCC structure exist as a saddle
point of the free energy landscape and hence these are unstable.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Block copolymers self-assemble into a variety of fascinating mesoscopic morphologies. The
most typical block copolymers are linear AB-type diblock copolymers. Four equilibrium
structures, body-centred-cubic (BCC) spheres, hexagonally packed cylinders, gyroid, and
lamellar structures, have been reported both theoretically [1, 2] and experimentally [3].

Apart from these thermal equilibrium structures, it is possible to observe some metastable
morphologies. For example, external shear can induce hexagonally perforated layers phase
as a metastable structure in a diblock copolymer system [4]. A similar structure has been
observed in a water–surfactant mixture in the process of the transition between gyroid and
lamellar structures [5].

In our previous paper [6], we studied the kinetics of morphological transitions by using
a two-mode expansion with the gyroid symmetry for the local concentration field. The time-
evolution of domain structures was analysed in the process of the structural transition between
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microphase separated phases in the weak-segregation regime. It was also confirmed that several
intermediate structures appear during the transitions.

The two-mode expansion is sufficient to express the four equilibrium structures observed
in the weak-segregation regime. However, one cannot exclude the possibility that structures
with other symmetries appear during the morphological transitions. The most conceivable
symmetry is the face centred-cubic (FCC) symmetry since Matsen and Bates have reported
that there is a narrow region in the phase diagram where the structure of close-packed spheres
is stable [1], even though there have been no experiments, to our knowledge, that have shown
that the FCC structure is stable in diblock copolymer melts.

The purpose of the present paper is to explore the possible intermediate structures and
their stability within the two-mode expansion method, extending it to cover FCC symmetry.
This kind of study (although limited to the weak-segregation regime) has not been available
so far, and would be of great importance in understanding the fundamental properties of
morphological transitions, such as the transition path of the interconnected mesoscopic
structures which are not seen in ordinary structural transitions in solids.

In the next section, we start with the kinetic equation and briefly describe the method of
the two-mode expansion. In section 3, we summarize the structures and stability having BCC
symmetry, whereas the morphologies with FCC symmetry are described in section 4. The
discussion is given in section 5.

2. Kinetic equation and mode expansion

In an AB-type diblock copolymer system, it is well known that the free energy function is
given by [7, 8]

F{φ} =
∫

d�r
[

1

2
(∇φ)2 − τ

2
φ2 +

g

4
φ4

]
+

α

2

∫
d�r

∫
d�r ′ G(�r , �r ′)

(
φ(�r) − φ̄

) (
φ(�r ′) − φ̄

)
,

(1)

where the order parameter φ denotes the difference of the local volume fraction between A
monomers and B monomers, i.e. φ = φA − φB, where φA (φB) is the local volume fraction of
the A (B) monomers. The incompressibility condition φA + φB = 1 has been imposed. The
parameters g and α are positive constants. The coefficient τ is inversely proportional to the
temperature through the Flory–Huggins parameter χ as τ ∝ χ N , where N is the degree of
polymerization. The spatial average of φ is denoted by φ̄ and G(�r , �r ′) is defined through the
relation

− ∇2G(�r, �r ′) = δ(�r − �r ′). (2)

Since φ is a conserved quantity, its time evolution is given by
∂φ

∂ t
= ∇2 δF

δφ
. (3)

Substituting (1) into (3), we obtain the kinetics equation [9]
∂φ

∂ t
= ∇2

[−∇2φ − τφ + gφ3
] − α

(
φ − φ̄

)
. (4)

In our previous paper [6], we employed a mode-expansion method to investigate kinetics of
morphological transitions in three dimensions. To make the present paper self-contained, we
shall describe the method briefly.

We consider the weak-segregation limit and expand φ as follows:

φ(�r , t) = φ̄ +

[ 12∑
l=1

al(t)e
i�ql ·�r +

6∑
m=1

bm(t)ei �pm ·�r +
12∑

n=1

cn(t)e
i�kn ·�r + c.c.

]
, (5)
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where al(t), bm(t) and cn(t) are real amplitudes and c.c. means complex conjugate. The 30
reciprocal lattice vectors, �ql , �pm and �kn, are given by

�q1 = CQ(2,−1, 1) �q2 = CQ(−2, 1, 1)

�q3 = CQ(−2,−1, 1) �q4 = CQ(2, 1, 1)

�q5 = CQ(−1,−2, 1) �q6 = CQ(1,−2, 1)

�q7 = CQ(−1, 2, 1) �q8 = CQ(1, 2, 1)

�q9 = CQ(1,−1,−2) �q10 = CQ(1, 1,−2)

�q11 = CQ(−1, 1,−2) �q12 = CQ(−1,−1,−2)

�p1 = CP(2, 2, 0) �p2 = CP (2,−2, 0)

�p3 = CP(0, 2, 2) �p4 = CP(0,−2, 2)

�p5 = CP(2, 0, 2) �p6 = CP (−2, 0, 2)

�k1 = CQ(−w,−w + 1, w + 1) �k2 = CQ(w − 1, w + 1, w)

�k3 = CQ(w,−w − 1, w − 1) �k4 = CQ(−w + 1, w,w + 1)

�k5 = CQ(−w,w + 1, w − 1) �k6 = CQ(w,w − 1, w + 1)

�k7 = CQ(−w − 1,−w,w − 1) �k8 = CQ(w − 1,−w,w + 1)

�k9 = CQ(w + 1,−w + 1, w) �k10 = CQ(w + 1, w,w − 1)

�k11 = CQ(−w − 1, w − 1, w) �k12 = CQ(−w + 1,−w − 1, w),

(6)

where w = 2
√

3/3, CQ = Q/
√

6 and CP = P/(2
√

2). The magnitudes P and Q satisfy the
following relation:

Q2 = 3
4 P2. (7)

The expression (5) with the vectors given by (6) can describe all the equilibrium structures
observed in the weak-segregation regime (i.e. lamellar, hexagonal, BCC and gyroid structures).

Substituting (5) into (4) and ignoring the higher harmonics, we obtain a coupled set of
equations for the amplitudes. This method is justified in the weak-segregation limit. Because
the amplitude equations are lengthy, we write down only the equation for a1.

da1

dt
= (−Q4 + τ Q2 − α

)
a1 − gQ2

[
3

(
φ̄2 − a1

2
)

a1 + 6

( 12∑
l=1

al
2 +

6∑
m=1

bm
2 +

12∑
n=1

cn
2

)
a1

+ 6
(
φ̄a3b4 + φ̄a7a12 + φ̄c7c12 + a1b2b5 + a2a3a4 + a2a5a8 + a2a6a7 + a3b1b2

+ a3b1b5 + a3b2b6 + a3b5b6 + a4a9a10 + a4a11a12 + a5a10b2 + a5a10b5

+ a5a12b6 + a6a9b3 + a6a9b6 + a6a11b2 + a6a11b4 + a6a11b5 + a7a10b1

+ a7c1c7 + a8a9b4 + a8a11b1 + a8a11b3 + a12c1c12 + b4c8c9
)]

. (8)

Similarly, substituting (5) into (1), we obtain the free energy function F in the terms of al , bm ,
cn , Q and P . All of the amplitude equations and the free energy have been listed in [6].

Since the period of a gyroid structure slightly differs from that of the other equilibrium
structures, the wavenumbers, P and Q, should be time-dependent during the morphological
transition between a gyroid and other equilibrium structures. However, because we have no
systematic way to derive the equation for P (or Q) at present, we employ the relaxation
dynamics for the wavenumber:

dP2

dt
= −h

∂ F

∂ P2
, (9)

where h is a positive constant.
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Figure 1. Phase diagram of the τ–φ̄ plane. The regions indicated by L, H, G, and S are the stable
phase of lamellae, hexagons, gyroid, and BCC, respectively. DIS means a disorder phase.

From the equilibrium solutions of (8) and (9), we have obtained the phase diagram on
the τ–φ̄ plane shown in figure 1 [6]. Other parameters are set to be α = g = h = 1. In
this case, the order–disorder transition occurs at τ = τc = 2 for φ̄ = 0. This critical value
should be compared with the mean field critical point (χ N)c = 10.495 in [2]. We have
verified by solving (4) numerically that the concentration variation of monomers is almost
sinusoidal, at least up to τ/τc = 1.25, and hence that the mode expansion method is justified.
This is the reason why the phase diagram is shown for 2 < τ < 2.5, above which the present
approximation becomes less accurate.

3. BCC symmetry

In order to investigate the morphological transition, we carried out numerical simulations for
the amplitude equations such as (8) and the time-evolution equation for the wavenumber (9),
and we found two intermediate structures, the Fddd structure and the perforated lamellar
structure [6]. The purpose of this section is to give a full account of these structures which
basically belong to BCC symmetry.

In figure 2, the Fddd structure is displayed by the isosurface of φ viewed from various
directions. This structure appears during the morphological transition from lamellar,hexagonal
and BCC structures to a gyroid structure, and from a gyroid structure to a lamellar structure.
Furthermore, we have verified that the Fddd structure is one of the equilibrium solutions of
the amplitude equations.

The connection of domains and the Bragg points of the Fddd structure are displayed
in figures 3(a) and (b), respectively. As seen in figure 3(b), the Bragg points of the Fddd
structure form a non-proper hexagon and two rectangles below and above the hexagon. In
figure 4, we compare the equilibrium free energy of lamellar, hexagonal, BCC, gyroid and
Fddd structures for τ = 2.2. Note that the free energy of the Fddd structure is fairly close
to (but larger than) that of a gyroid structure around at φ̄ ∼= 0.1 where the gyroid structure is
most stable. Therefore, the Fddd structure is a metastable structure. It is mentioned that the
Fddd structure has been obtained by direct numerical simulations of (4) [10]. Experimentally,
the Fddd structure has not been found in AB diblock copolymers but it has been observed in
ABC triblock copolymers as an equilibrium phase [11, 12].
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Figure 2. Fddd structure obtained for the parameters α = g = h = 1, τ = 2.3 and φ̄ = −0.05.

Figure 3. (a) Connection of domains in the Fddd structure. (b) Bragg points of the Fddd structure.
The points in the same plane are connected with lines and the white points represent the Bragg
points of a lamellar structure.

Next, we discuss the perforated lamellar structure shown in figure 5. This structure appears
during the transition from a lamellar structure to a hexagonal structure. This perforated lamellar
structure is not a metastable structure, but a transient structure. That is, this structure is not a
stable equilibrium solution of the amplitude equations in contrast to the Fddd structure. Qi
and Wang have also found this structure by using the single-mode approximation method [13],
which is consistent with the present results obtained by the two-mode approximation.

We have examined the position of holes in each layer of the perforated lamellar structure.
The figures from left to right in figure 5(b) display the top-view of successive three layers. It is
evident from this figure that the holes locate at the same position every two layers. In addition,
it is found that the configuration of holes has a rhombic rather than a hexagonal symmetry.
Therefore the holes of this perforated lamellar structure are not close-packed. The origin of
this might come from the fact that a hexagonally close-packed structure cannot be represented
by the mode expansion as long as the number of the modes is finite.
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Figure 4. Free energy of lamellar (L), hexagonal (H), BCC (S), gyroid (G) and Fddd (F) structures
for τ = 2.2. FDIS is the free energy of a homogeneous state.

Figure 5. (a) The perforated lamellar structure obtained during the morphological transition from a
lamellar structure for τ = 2.5 and φ̄ = −0.13 to a hexagonal structure for τ = 2.1 and φ̄ = −0.13.
(b) The position of holes on each successive layer of the perforated lamellae.

4. FCC symmetry

In the preceding section, we have examined the existence and the stability of the intermediate
structures in the morphological transitions based on the expansion (5). However, this mode
expansion does not take account of FCC symmetry and its related structures. In this section,
in order to investigate the stability of the structures with FCC symmetry, we expand the order
parameter φ as

φ (�r , t) = φ̄ +

[ 4∑
m=1

Am(t)ei�sm ·�r + c.c.

]
, (10)

where �sm are the fundamental reciprocal lattice vectors of the FCC structure and are given by

�s1 = S√
3
(1, 1, 1) �s2 = S√

3
(1,−1, 1)

�s3 = S√
3
(−1, 1, 1) �s4 = S√

3
(−1,−1, 1).

(11)
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The positive constant S is the magnitude of �sm . Substituting (10) into (4) and ignoring the
higher harmonics, we obtain the following set of amplitude equations:

d A1

dt
= (−S4 + τ S2 − α

)
A1

− 3gS2 (
φ̄2 A1 + A1

3 + 2A1 A2
2 + 2A1 A3

2 + 2A1 A4
2 + 2A2 A3 A4

)
d A2

dt
= (−S4 + τ S2 − α

)
A2

− 3gS2
(
φ̄2 A2 + A2

3 + 2A2 A1
2 + 2A2 A3

2 + 2A2 A4
2 + 2A1 A3 A4

)
d A3

dt
= (−S4 + τ S2 − α

)
A3

− 3gS2
(
φ̄2 A3 + A3

3 + 2A3 A1
2 + 2A3 A2

2 + 2A3 A4
2 + 2A1 A2 A4

)
d A4

dt
= (−S4 + τ S2 − α

)
A4

− 3gS2 (
φ̄2 A4 + A4

3 + 2A4 A1
2 + 2A4 A2

2 + 2A4 A3
2 + 2A1 A2 A3

)
.

(12)

The free energy (1) can also be written in terms of the amplitudes as

F = FDIS +
(

S2 − τ +
α

S2

) 4∑
m=1

Am
2

+
3g

2

(
−

4∑
m=1

Am
4 + 2

4∑
m=1

4∑
n=1

Am
2 An

2 + 8A1 A2 A3 A4 + 2φ̄2
4∑

m=1

Am
2

)
, (13)

where FDIS is the free energy of the homogeneous state given by

FDIS = −τ

2
φ̄2 +

g

4
φ̄4. (14)

We have solved (12) numerically and found that there are two types of equilibrium solution.
One is given by the set A1 = A and A2 = A3 = A4 = B , and the other is given by
A1 = A2 = C and A3 = A4 = D. We shall examine the stability of each solution below.

First, we consider the case A1 = A and A2 = A3 = A4 = B where (12) can be simplified
as

d A

dt
= (−S4 + τ S2 − α

)
A − 3gS2 (

A3 + 6AB2 + 2B3 + φ̄2 A
)

dB

dt
= (−S4 + τ S2 − α

)
B − 3gS2

(
5B3 + 2AB2 + 2A2 B + φ̄2 B

)
.

(15)

The nullclines of (15) for α = g = 1, τ = 2.2 and φ̄ = 0.1 are shown in figure 6, where
an S-shaped curve indicates the line d A/dt = 0 and a slanted ellipse and a horizontal line
represent the lines given by dB/dt = 0. Two diagonal lines indicate the lines A = ±B . The
circles and squares at the intersection of the curves d A/dt = 0 and dB/dt = 0 indicate the
stable and unstable solutions, respectively.

In this case, there are five solutions characterized by l, f, d, p and o as indicated in figure 6.
The solutions l given by A �= 0 and B = 0 and o given by A = B = 0 indicate a lamellar
structure and a disorder state, respectively. The lamellar structure is stable whereas the disorder
state is unstable with this parameter set. From the expansion of φ (10), one can easily find
that the solution f, that is A = B �= 0, is an FCC structure. It is emphasized that this FCC
structure is unstable. On the other hand, it has been reported that close-packed spheres (either
FCC structure or hexagonally close-packed structure) exist as a stable equilibrium structure
above a certain degree of segregation [1]. This discrepancy might be attributed to the condition
that our study is restricted to the weak-segregation regime. In fact, as mentioned at the end of
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Figure 6. The nullclines of (15) for α = g = 1, τ = 2.2 and φ̄ = 0.1. An S-shaped curve
indicates the line dA/dt = 0 and a slanted ellipse and a horizontal line represent the lines given
by dB/dt = 0. Two diagonal lines indicate the equality A = B and −B . The direction of
the arrows indicates the direction of dA/dt and dB/dt . The solutions of lamellar, FCC, diamond,
hexagonally perforated lamellar and disorder structures are indicated by l, f, d, p and o, respectively.
The solutions shown by the circles are stable, whereas those by the squares are unstable.

Figure 7. View from the [110] direction (left) and from the [111] direction (right) of hexagonally
perforated lamellar structure marked as p in figure 6.

section 2, the present theory is valid for τ/τc � 1.25, whereas the results in [2] indicate that a
close-packed structure appears in the phase diagram for χ N/ (χ N)c � 1.7.

The structure of the solution p, i.e. A �= 0, B �= 0 and A �= B , corresponds to a
perforated lamellar structure as shown in figure 7. Figure 8 clarifies that these holes are
arrayed hexagonally in each layer and located at the same position every three layers. From
these facts, one can easily identify it with a hexagonally perforated lamellar structure (ABC
type) with a close-packed structure of holes. Note that this perforated lamellar structure is
unstable as well as another perforated lamellae (AB-type) discussed in section 3.

We identify the solution d in figure 6 with a diamond structure which is shown in figure 9.
It is noted that the diamond structure is stable with respect to deviations of the amplitudes
Ai (i = 1, . . . , 4) around the equilibrium value.
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Figure 8. Position of holes on each successive layer of the hexagonally perforated lamellar
structure. The majority component exists more than the minority one at the circular regions.

Figure 9. (a) Diamond structure. The four junctions are inside the unit cubic cell whereas the
remaining junctions are on the faces of the cell. (b) View from the [110] direction (left) and from
the [111] direction (right).

Next, we consider the case of A1 = A2 = C and A3 = A4 = D, where (12) can be
rewritten as

dC

dt
= (−S4 + τ S2 − α

)
C − 3gS2 (

3C3 + 6C D2 + φ̄2C
)

dD

dt
= (−S4 + τ S2 − α

)
D − 3gS2 (

3D3 + 6C2 D + φ̄2 D
)
.

(16)

The nullclines of (16) for α = g = 1, τ = 2.2 and φ̄ = 0.1 are shown in figure 10. The
solutions f and o represent an unstable FCC structure and an unstable homogeneous state, as
in the previous case. The stable solution c is given either by C �= 0 and D = 0 or by C = 0
and D �= 0. Therefore, this structure is represented only by two reciprocal vectors and is
essentially a two-dimensional structure. The concentration variation is displayed in figure 11,
which indicates a distorted cylindrical structure.

The free energy of these structures for τ = 2.2 is compared to that of a lamellar structure
in figure 12. It is evident that the diamond structure and the distorted cylindrical structure are
not the most stable structures.

5. Summary and discussion

We have explored the intermediate structures in the process of the morphological transitions
by means of the mode expansion approach. By solving the amplitude equations for BCC
and FCC symmetries, we have found several time-independent solutions such as Fddd ,
FCC, hexagonally perforated lamellar, perforated lamellar (AB-type) and diamond structures.
Among the equilibrium solutions, the Fddd structure, distorted cylindrical structure and
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Figure 10. The nullclines of (16) for α = g = 1, τ = 2.2 and φ̄ = 0.1. An ellipse horizontally
(vertically) elongated and a vertical (horizontal) line represent the line dC/dt = 0 (dD/dt = 0).
Two diagonal lines indicate C = D and −D. The equilibrium solutions are c, f and o.

Figure 11. Distorted cylindrical structure marked as c in figure 10.

diamond structure are stable within the two-mode theory. The equilibrium free energies of the
distorted cylinders and the diamond structure are higher than that of the lamellar structure, and
that of the Fddd structure is higher than those of the hexagonal and lamellar structures.
Therefore these are candidates for a metastable structure in the course of morphological
transitions. In our previous study [6], the Fddd structure indeed appears as an intermediate
structure in the transition.

On the other hand, the FCC structure, hexagonally perforated lamellar structure and AB-
type of perforated lamellar structure are unstable solutions of the amplitude equations valid in
the weak-segregation regime. Although these are unstable, we do not exclude the possibility
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Figure 12. Comparison of the free energy of lamellar (L), cylindrical (C) and diamond (D)
structures for τ = 2.2. It should be noted that there is a region for φ̄ � 0.1 where gyroid,
hexagonal, and bcc structures are more stable than the lamellar structure, as shown in figure 4.

that the structures are observed in the transition kinetics as a transient morphology, because
the solutions are the saddle points of the free energy landscape.

It is an interesting future work to investigate the stability of these structures under external
fields, such as shear flow and electric field, where some of the unstable or metastable structures
might become more stable. Solvent effects would also alter the stability. These extensions of
the present approach will be useful to obtain insight into the domain control of mesoscopic
structures.
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